
Flow Rates and 
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Abstract The equation of McDougall and Evans was found not to 
apply to granulations. The functional relationships among volumetric 
powder flow rates, angles of repose, and particle size were demonstrated 
to exhibit maxima (rather than minima) in five common pharmaceutical 
granulations produced by wet processing. The angular behavior of 
granules (such as the experienced range of angles) is explained oia sup- 
ported stacking geometries, and the shallow maxima in the angle of repose 
versus granule diameter was derived from this model. 
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Many publications have dealt with flow rates and repose 
angles (1-11). Attempts to relate these two properties 
failed to generate firm conclusions or equations of general 
validity (12, 13) for powders. Flow properties are of par- 
ticular interest to the pharmaceutical researcher and 
technologist because of the effect of flow properties on the 
quality of the resulting solid dosage forms (2). 

BACKGROUND 

Repose angle measurements for powders have been viewed with the 
purpose of obtaining information on the cohesion of a powder. There is 
a theoretical correlation between the cohesion and the repose angle of 
a smooth slant heap (14), but such factors as the bulk density of the 
sample, i e . ,  the extent of its consolidation prior to measurement, affect 
the repose angle (15,16). Therefore, it is not possible to draw quantitative 
conclusions regarding the cohesion from repose angles. For materials 
above 100 pm, this approach is still followed since such powders cannot 
be tested in shear cells due to crushing during consolidation and low 
cohesion and tensile strength. The repose angle, a, relates to the diameter, 
d ,  of a fine powder (17) uia the inverse relationship a = (9 /d)  + s, where 
9 and s are constants for a particular powder. For a coarse powder or 
granulation, experimental evidence (16) indicates that a, when measured 
uia flow from a funnel, gives rise to a shallow maximum a t  a particular 
particle diameter. Hence, a = h ( d ) ,  where h denotes “function of.” 

Flow rates, W ,  are a function of partide diameter (181, so W = g ( d ) ,  
where g denotes “function of.” This function has a maximum a t  a par- 
ticular diameter (18). Since W = g ( d )  and 01 = h ( d ) ,  i t  follows that d = 
h-’(a) and W = g[h-*(a)] in the regions where h ( d )  is a monotonically 
increasing or decreasing function; i.e., there must be a relationship be- 
tween W and a, i x . ,  W = f ( c ~ ) ,  where f denotes “function of.” The func- 
tionalities h and g are not universal but depend on experimental pa- 
rameters such as orifice diameter. 

McDougall and Evans (1) derived such a relationship on theoretical 
grounds: 

P D ’ . ~  =j[( l  + 3p’)//~]O.~ (Eq. 1) 

where W is the flow rate, g is the gravitational acceleration, p is the 
coefficient of internal friction, p is apparent density, and D is the diameter 
of the efflux tube. 

One purpose of this study was to examine whether extrema in a = h ( d )  
and W = g ( d )  can logically produce extrema in W = f(a). 

It is a general rule (9) in solid dosage form technology that a repose 
angle of 25-40° is a good working range. Therefore, for theory to fall in 

Table  I-Formulas for Granulations Used in the  Repose Angle 
Studies 

Granulation 
Ingredient I I1 111 IV v 

- - -  FD&C Yellow No. 5, g 
Starch USP (dry), g 180 440 100 - - 

6 -  

Lactose USP, g 1515 1755 1375 1000 1000 
Starch USP (paste), g 45 15 - 
Water, g 450 300 - 90 117 

- -  
Sucrose USP, g - 1110 - - -  
Povidone, g _ -  
Alcohol USP (95%), g _ -  
Acacia, g - -  
Gelatin, g - -  - - 

40 - - 
360 - - 

-- 10 - 
13 

line with practice, Eq. 2 should yield a maximum in this repose angle 
range. Theoretical Eq. 2 is depicted in Fig. 1, and it is seen that the flow 
rate has a minimum (not a maximum) a t  p = 0.6. For a cohesionless 
powder: 

p = tan a (Eq. 2) 

so p = 0.6 corresponds to LY = 30”. Kaneniwa et al. (17) classified powders 
of particle size below 50 pm as being cohesive, and Pilpel (16) classified 
powders in the 50-150-pm range as mildly cohesive; larger fractions are 
essentially noncohesive. These ranges are, of course, general rules and 
do not apply to all powders [carboxymethylcellulose and pyrogenic silica 
being notable exceptions (IS)]. 

This study dealt with granulations of particle diameters above 150 pm. 
The intent was to show that repose angles of granulations essentially 
depend on the stacking characteristics, which explain the shallow maxima 
in N versus d curves. 

1 oo 2 oo 30° 40’ 
REPOSE ANGLE, a 

Figure 1-W/j as a func t ion  of a (= tan-’ p )  according t o  Eq. I .  
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Figure 2--Flow rates as a function o f  repose angle based on a 100-g 
powder charge. Granulation V had relatively close cr values (30.6-31.6) 
and could not be graphed in the  scaling shown. Key: 0, Granulation 1; 
0,  Granulation II ;  8 ,  Granulation IKI; and @, Granulation IV. 

angle, a, is then given by t a n - l [ h / ( G ) ] ,  The flow rate was recorded 
by an electric timer. 

Granulations 1-111 were tested again in a similar fashion using 100 g 
of each rather than 250 cc. 

The porosities of the powder heaps were determined by determining 
the apparent densities of the heap and the particle density (not true 
density) of the granules. Since the height and the base area of the heap 
are known, the volume, v ,  can be calculated. The apparent density, p' ,  
can then be calculated from the weight, L ,  as p' = L/v.  

The particle densities were determined as follows. The procedure for 
determining true density pycnometrically using organic solvents was 
followed. The figure thus obtained was the volume of liquid displaced, 
V1, per sample weight, 41, of granules. Since some (but not total) solvent 
penetration can be expected, the particles were removed from the solvent 
and subjected to a drying curve. The point where the falling rate started 
was noted; the volume of solvent at this point corresponds to the volume 
of voids, V2, penetrated by the liquid. Hence, the particle density, pp,  is 
ql/(vl + VZ), and the bed porosity, I b ,  is then given by f b  = 1 - (p' /  
P P ) .  

Povidone granulations could not be included in the part of the study 
dealing with a versus 6 relationships, because of the solubility of povidone 
in organic solvents. 

RESULTS AND DISCUSSION 

Figure 1 shows that the flow of a particular granulation through a 
particular orifice should have a minimum for a granulation with an angle 
of repose of about 30'. Equation 1 predicts this finding because the de- 
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Table 11-Repose Angles at which Flow Was Maximum 

Repose Angle at Maximum 
Flow 

Granulation Amount cc/sec g/sec 
I 250 cc 29.6' 29.6' 

II 250 cc 29.4' 29.4' 
I11 
IV 
V 

250 cc 31.6' 29.8O 
220 cc 30.4' 29.2' 
200 cc 30.8' 30.8' 

I 100 e 30.7' 30.7' 
I1 100 g 29.3' 29.3' 

V 100 g 31.6' 30.6' 

111 100 g 31' 31' 
IV 100 g 31' 30' 

I1 100 g 29.3' 29.3' 

V 100 g 31.6' 30.6' 

111 100 g 31' 31' 
IV 100 g 31' 30' 

rivative with respect to w of Eq. 1: 

equals zero when p = tan (Y = l/d or when a = 30°. The second deriv- 
ative of Eq. 3 is: 

+ 0.5j[(l + 3fi2)/y]-0.h(2/fi3) (Eq. 4) 

This equation, when p = 1 / 6  is inserted, gives the following value of the 
second derivative: 

-= -0 + 0.5j[(l t 1)/d]-0,s2.3fi 
dw2 

(Eq. 5) 

which is larger than zero. Therefore, Eq. 1 does predict a minimum at 
a repose angle of 30' for a cohesionless powder. In contrast, the granu- 
lations reported here showed a maximum in flow rate at about 30-33" 
(Fig. 2 and Table 11). 

The different repose angles in this study were obtained by separating 
different mesh cuts of the granulations. Flow, of course, is a function of 
the mean diameter of the powder sample (10). The flow of the granula- 
tions is shown as a function of granule size in Fig. 3, and the flow exhibited 
the same dependence as reported elsewhere in the literature for powders 
(10) and granulations (19). 

The repose angle, (Y, is plotted as a function of d ,  the mean mesh frac- 
tion diameter, in Fig. 4. A maximum occurred; this finding is somewhat 
different, functionally, from what has been reported in the literature for 
fine powders (4, 11) but is in accordance with some findings regarding 
coarse materials (16). 

The behavior of granules is shown in Figs. 2-4; there are, of course, only 
two independent relations out of the three. The functional relations from 
Figs. 2,3,  and 4, respectively, are: 

w = f (a )  (Eq. 6) 

and: 
W = g ( d )  

(Y = h ( d )  

10 cd 

Figure 3-Flow rates as a func t ion  of granule diameter. Figure 3a is based o n  a 250-cc powder charge; Fig. 3b is based o n  a 100-g charge. Key:  0, 
Granulation I;  a, Granulation II;  0,  Granulation I I I ;  0, Granulation IV; and 6, Granulation V.  
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Figure 4-Repose angles as a function of particle diameter. Eachpoint 
represents the average of the  five granulations, and the bars indicate 
the  90% confidence limits on  the  average. 

That a maximum can exist in all of the functional relationships is best 
demonstrated by approximating the curves in Figs. 2 and 4 by parabolas, 
i.e.: 

and: 

( a  - amax) = -k z(d - drnax)' 0%. 10) 

where the subscript max denotes the maximum value of the dependent 
variable or the value of the independent variable a t  which the dependent 
variable attains its maximum. The curves in Figs. 2 and 4 imply that 
extrema may occur but that they need not necessarily occur. One re- 
striction in the argument given is that it assumes coinciding maxima in 
a a n d  W. 

If Eq. 10 is inserted in Eq. 9, then: 

W - Wmax = -klk22(d - drnax)l (Eq. 11) 

which describes a curve with a maximum, i.e., o f  the shape shown in Fig. 
3. 

A closely packed heap of spheres is shown in Fig. 5, and one (of many 
possible) metastable heap of loose packing is shown in Fig. 6. The porosity 
of a heap, as opposed to solid populations in confining vessels, has not 
been covered to any extent in the literature (18,19). The apparent density 
of spheres in cylinders was discussed by Scott (20), who overcame dif- 
ficulties stemming from wall effects (21) by plotting the packing density 
(1 - c) versus the reciprocal o f  the vessel diameter (I/&). He found a 
linear relationship, which, when extrapolated to l/& - 0 f i e . ,  to DO - 
m), gave a porosity of 0.36. This value compares favorably with the 
findings of Berg e t  al. (22) that one-dimensional vertical shaking of steel 

SIDE VIEW 

4 

.R 3 

Figure 5-A closely packed heap of spheres. Key: top  (AC'B'), un- 
supported by extra unloaded spheres; and left part of bottom (ACCI), 
supported by an  extra unloaded sphere (e.g., A) i n  each layer [i.e., 
cross-hatched (B) spheres disappear 1. 

SIDE VIEW 

TOP VIEW 

Figure 6-Loose packing resulting from removing every second sphere 
f rom every second layer in  the  supported structure shown in  Fig. 5. T h e  
partially depleted layer is shown by cross-hatched spheres in an  arbi- 
trary layer. 

spheres gave a porosity of 39% and that three-dimensional shaking gave 
26% porosity and with the findings of Newitt and Conway-Jones (23) of 
a porosity of 38% for closely packed (wet) sand. 

In each of these cases, the populations of steel balls or particles were 
confined by a vessel which, of course, makes them different from a heap. 
If a heap of spheres were cohesive, then loosely and closely packed heaps 
would have repose angles of the order of 60" as shown in Fig. 5. Indeed, 
Berg et al. (24) found a 60" angle of the powder remaining in a cubical 
container (where there is wall support). However, the 60" figure does not 
correlate with the finding here that the angles are in a range of 28- 
36'. 

To evaluate the porosity of a conical heap, as shown in Fig. 5, circles 
were drawn as shown in Fig. 7 with radii 1.5 d ,  2.5 d ,  . . . , q d/2  about an 
arbitrarily chosen central sphere ( S )  in every second layer. For instance, 
as shown in Fig. 7, in layer 3 a circle with radius 2.5 d is drawn around the 
central sphere and there are q = 5 spheres in the diagnoal layer. In al- 
ternate layers, circles of radii d ,  2 d ,  . . . , q d/2 were drawn around the 
center of the diagonal which now is a t  the point (P)  where two spheres 
touch. The number of spheres in a circle (layer) was counted with the 
arbitrary rule that if the center of a sphere were inside the circle, then 
the sphere was also "inside" the circle, i.e., part of the layer. 

For instance in Fig. 7, N and M are part of layer 4 but not part of layer 
3. In this fashion it is possible to calculate the number of spheres in the 
top layer, the next highest layer, and so on; i.e., the number of spheres 
can be calculated for successive values of q. The distance between each 

VIEW FROM ABOVE 

Figure 7-Spheres in two-dimensional close packing. In  one layer, the 
center will be in the center of a sphere (S); in the layer above and below 
it, the  center of the  layer will be between two spheres ( P ) .  Spheres are 
counted as being inside the circle (part of the  layer) if the center of a 
sphere is inside the circle. For instance, N and Mare part of layer 4. The  
dotted sphere is not part of layer 3. 
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Figure 8-Packing densities of heaps as a function of the number of 
spheres on the diagonal of  the base (number of layers in the heap)  
(upper curve). By assuming various asymptote values, subtracting these 
from the packing densities, and plotting them semilogarithmically 
versus q, the best straight line, i.e., the one with the smallest residual 
of squares (lower curue), occurred with a n  asymptote value of 0.62. 

layer is (fi/2)d, so that the height of the cone is [ (q  - 1)(.\/2/2) + l ] d ,  
which approaches q&/2 for large values of q. The area of the base is 
~ ( d q ) ~ / 4 ;  i.e., the cone volume can be calculated. Dividing the volume 
of all spheres by the cone volume then gives the packing density and, 
hence (by subtracting the latter from one ), the porosity. Figure 8 shows 
that the packing density approaches 0.62 (i.e., c = 0.38). The bed po- 
rosities found in this study ranged from 0.28 to 0.54. 

Making reference to Fig. 5 and noting that there are q spheres on the 
base diagonal, one sees that AC’ - qd/2 and B’C’ - q f i  d/2 as q - m .  

The repose angle hence approaches: 

cr = tan-l[qdv‘%(qd)] = 54.7O (Eq. 12) 

This value is obviously much higher than is generally encountered for 
cohesionless powders and granulations. 

A conical heap (Fig. 5) is only stable if: ( a )  the friction between the 
plane support and the lower (outside) spheres is sufficiently high, and 
( 6 )  the friction between spheres is sufficiently high to support the outside 
spheres. If this is not the case, the spheres “slip” out until there are suf- 
ficient spheres in the horizontal plane without spheres over them that 
can serve as retainers of the first sphere in the plane that carries spheres 
above it. If the cross-hatched spheres are removed, the shallower cone 
results, which has two supporting spheres on each diagonal. The diagonal 
of the base still contains q spheres, but the first layer above contains q 
- 3 and the ith layer above the base contains q - 3i spheres on the di- 
agonal. There would be q/3 layers in the center and the repose angle for 
large values of q would equal: 

(Eq. 13) 

With these assumptions and restrictions, it can be assessed that a closely 
packed conical heap has a repose angle of aC = 25.2’ and a porosity of tc 

= 0.38. 
Loosely packed structures can be visualized in many ways. Figure 6 

shows an example of a loose structure constructed by removing every 
second sphere in every second layer of the supported structure shown in 
Fig. 5. Therefore, the packing density would be 0.75 X 0.62 = 0.46; i.e., 
the porosity would be 0.54. The repose angle is obtained by noting that 
there are q (four) spheres to the right (and to the left) of the base center 
and that there are also q (four) layers (which are d.\/2/2 cm apart). Hence, 
the repose angle for large values of q approaches: 

a = tan-’ [(qd&/2)/(qd)] = tan-’(fi /2) = 35.3’ (Eq. 14) 

a = tan-’ [(q/3)(fi/2)/(q/2)] = tan-l(v‘%3) = 25.2’ 

(v 
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The experimentally determined bed porosities ranged from 0.28 to 0.54, 
in agreement with the calculations, as is the fact that the repose angles 
ranged from 28.1 to 35.8’. 

SUMMARY 

1. For monodisperse granulations, experimental flow rates maximize 
(not minimize) a t  a particular repose angle around 30’. 

2. Based on packing geometries and support layers, the expected re- 
pose angles should be 25.2-35.3’, which correlates well with experimental 
data ranging from 28.1 to 35.8’. 

3. Based on packing geometries and support layers, the expected po- 
rosities should be 0.3M.54; the experimentally determined bed porosities 
were in a range of 0.28-0.54. 
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